Serveur d'exploration sur le phanerochaete

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Gene expression metadata analysis reveals molecular mechanisms employed by Phanerochaete chrysosporium during lignin degradation and detoxification of plant extractives.

Identifieur interne : 000170 ( Main/Exploration ); précédent : 000169; suivant : 000171

Gene expression metadata analysis reveals molecular mechanisms employed by Phanerochaete chrysosporium during lignin degradation and detoxification of plant extractives.

Auteurs : Ayyappa Kumar Sista Kameshwar [Canada] ; Wensheng Qin [Canada]

Source :

RBID : pubmed:28275822

Descripteurs français

English descriptors

Abstract

Lignin, most complex and abundant biopolymer on the earth's surface, attains its stability from intricate polyphenolic units and non-phenolic bonds, making it difficult to depolymerize or separate from other units of biomass. Eccentric lignin degrading ability and availability of annotated genome make Phanerochaete chrysosporium ideal for studying lignin degrading mechanisms. Decoding and understanding the molecular mechanisms underlying the process of lignin degradation will significantly aid the progressing biofuel industries and lead to the production of commercially vital platform chemicals. In this study, we have performed a large-scale metadata analysis to understand the common gene expression patterns of P. chrysosporium during lignin degradation. Gene expression datasets were retrieved from NCBI GEO database and analyzed using GEO2R and Bioconductor packages. Commonly expressed statistically significant genes among different datasets were further considered to understand their involvement in lignin degradation and detoxification mechanisms. We have observed three sets of enzymes commonly expressed during ligninolytic conditions which were later classified into primary ligninolytic, aromatic compound-degrading and other necessary enzymes. Similarly, we have observed three sets of genes coding for detoxification and stress-responsive, phase I and phase II metabolic enzymes. Results obtained in this study indicate the coordinated action of enzymes involved in lignin depolymerization and detoxification-stress responses under ligninolytic conditions. We have developed tentative network of genes and enzymes involved in lignin degradation and detoxification mechanisms by P. chrysosporium based on the literature and results obtained in this study. However, ambiguity raised due to higher expression of several uncharacterized proteins necessitates for further proteomic studies in P. chrysosporium.

DOI: 10.1007/s00294-017-0686-7
PubMed: 28275822


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Gene expression metadata analysis reveals molecular mechanisms employed by Phanerochaete chrysosporium during lignin degradation and detoxification of plant extractives.</title>
<author>
<name sortKey="Kameshwar, Ayyappa Kumar Sista" sort="Kameshwar, Ayyappa Kumar Sista" uniqKey="Kameshwar A" first="Ayyappa Kumar Sista" last="Kameshwar">Ayyappa Kumar Sista Kameshwar</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1</wicri:regionArea>
<wicri:noRegion>P7B 5E1</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Qin, Wensheng" sort="Qin, Wensheng" uniqKey="Qin W" first="Wensheng" last="Qin">Wensheng Qin</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1, Canada. wqin@lakeheadu.ca.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1</wicri:regionArea>
<wicri:noRegion>P7B 5E1</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28275822</idno>
<idno type="pmid">28275822</idno>
<idno type="doi">10.1007/s00294-017-0686-7</idno>
<idno type="wicri:Area/Main/Corpus">000169</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000169</idno>
<idno type="wicri:Area/Main/Curation">000169</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000169</idno>
<idno type="wicri:Area/Main/Exploration">000169</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Gene expression metadata analysis reveals molecular mechanisms employed by Phanerochaete chrysosporium during lignin degradation and detoxification of plant extractives.</title>
<author>
<name sortKey="Kameshwar, Ayyappa Kumar Sista" sort="Kameshwar, Ayyappa Kumar Sista" uniqKey="Kameshwar A" first="Ayyappa Kumar Sista" last="Kameshwar">Ayyappa Kumar Sista Kameshwar</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1</wicri:regionArea>
<wicri:noRegion>P7B 5E1</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Qin, Wensheng" sort="Qin, Wensheng" uniqKey="Qin W" first="Wensheng" last="Qin">Wensheng Qin</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1, Canada. wqin@lakeheadu.ca.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1</wicri:regionArea>
<wicri:noRegion>P7B 5E1</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Current genetics</title>
<idno type="eISSN">1432-0983</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Computational Biology (methods)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Inactivation, Metabolic (MeSH)</term>
<term>Lignin (metabolism)</term>
<term>Metabolic Detoxication, Phase I (MeSH)</term>
<term>Metabolic Detoxication, Phase II (MeSH)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Phanerochaete (genetics)</term>
<term>Phanerochaete (metabolism)</term>
<term>Secondary Metabolism (MeSH)</term>
<term>Stress, Physiological (MeSH)</term>
<term>Transcriptome (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Biologie informatique (méthodes)</term>
<term>Détoxication de phase I (MeSH)</term>
<term>Détoxication de phase II (MeSH)</term>
<term>Inactivation métabolique (MeSH)</term>
<term>Lignine (métabolisme)</term>
<term>Métabolisme secondaire (MeSH)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Phanerochaete (génétique)</term>
<term>Phanerochaete (métabolisme)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Stress physiologique (MeSH)</term>
<term>Transcriptome (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Lignin</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Phanerochaete</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Phanerochaete</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Phanerochaete</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Computational Biology</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Lignine</term>
<term>Phanerochaete</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Biologie informatique</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression Profiling</term>
<term>Gene Expression Regulation, Plant</term>
<term>Inactivation, Metabolic</term>
<term>Metabolic Detoxication, Phase I</term>
<term>Metabolic Detoxication, Phase II</term>
<term>Oxidation-Reduction</term>
<term>Secondary Metabolism</term>
<term>Stress, Physiological</term>
<term>Transcriptome</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de profil d'expression de gènes</term>
<term>Détoxication de phase I</term>
<term>Détoxication de phase II</term>
<term>Inactivation métabolique</term>
<term>Métabolisme secondaire</term>
<term>Oxydoréduction</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Stress physiologique</term>
<term>Transcriptome</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Lignin, most complex and abundant biopolymer on the earth's surface, attains its stability from intricate polyphenolic units and non-phenolic bonds, making it difficult to depolymerize or separate from other units of biomass. Eccentric lignin degrading ability and availability of annotated genome make Phanerochaete chrysosporium ideal for studying lignin degrading mechanisms. Decoding and understanding the molecular mechanisms underlying the process of lignin degradation will significantly aid the progressing biofuel industries and lead to the production of commercially vital platform chemicals. In this study, we have performed a large-scale metadata analysis to understand the common gene expression patterns of P. chrysosporium during lignin degradation. Gene expression datasets were retrieved from NCBI GEO database and analyzed using GEO2R and Bioconductor packages. Commonly expressed statistically significant genes among different datasets were further considered to understand their involvement in lignin degradation and detoxification mechanisms. We have observed three sets of enzymes commonly expressed during ligninolytic conditions which were later classified into primary ligninolytic, aromatic compound-degrading and other necessary enzymes. Similarly, we have observed three sets of genes coding for detoxification and stress-responsive, phase I and phase II metabolic enzymes. Results obtained in this study indicate the coordinated action of enzymes involved in lignin depolymerization and detoxification-stress responses under ligninolytic conditions. We have developed tentative network of genes and enzymes involved in lignin degradation and detoxification mechanisms by P. chrysosporium based on the literature and results obtained in this study. However, ambiguity raised due to higher expression of several uncharacterized proteins necessitates for further proteomic studies in P. chrysosporium.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28275822</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>07</Month>
<Day>17</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-0983</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>63</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2017</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>Current genetics</Title>
<ISOAbbreviation>Curr Genet</ISOAbbreviation>
</Journal>
<ArticleTitle>Gene expression metadata analysis reveals molecular mechanisms employed by Phanerochaete chrysosporium during lignin degradation and detoxification of plant extractives.</ArticleTitle>
<Pagination>
<MedlinePgn>877-894</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00294-017-0686-7</ELocationID>
<Abstract>
<AbstractText>Lignin, most complex and abundant biopolymer on the earth's surface, attains its stability from intricate polyphenolic units and non-phenolic bonds, making it difficult to depolymerize or separate from other units of biomass. Eccentric lignin degrading ability and availability of annotated genome make Phanerochaete chrysosporium ideal for studying lignin degrading mechanisms. Decoding and understanding the molecular mechanisms underlying the process of lignin degradation will significantly aid the progressing biofuel industries and lead to the production of commercially vital platform chemicals. In this study, we have performed a large-scale metadata analysis to understand the common gene expression patterns of P. chrysosporium during lignin degradation. Gene expression datasets were retrieved from NCBI GEO database and analyzed using GEO2R and Bioconductor packages. Commonly expressed statistically significant genes among different datasets were further considered to understand their involvement in lignin degradation and detoxification mechanisms. We have observed three sets of enzymes commonly expressed during ligninolytic conditions which were later classified into primary ligninolytic, aromatic compound-degrading and other necessary enzymes. Similarly, we have observed three sets of genes coding for detoxification and stress-responsive, phase I and phase II metabolic enzymes. Results obtained in this study indicate the coordinated action of enzymes involved in lignin depolymerization and detoxification-stress responses under ligninolytic conditions. We have developed tentative network of genes and enzymes involved in lignin degradation and detoxification mechanisms by P. chrysosporium based on the literature and results obtained in this study. However, ambiguity raised due to higher expression of several uncharacterized proteins necessitates for further proteomic studies in P. chrysosporium.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kameshwar</LastName>
<ForeName>Ayyappa Kumar Sista</ForeName>
<Initials>AKS</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Qin</LastName>
<ForeName>Wensheng</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1, Canada. wqin@lakeheadu.ca.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>03</Month>
<Day>08</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Curr Genet</MedlineTA>
<NlmUniqueID>8004904</NlmUniqueID>
<ISSNLinking>0172-8083</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>9005-53-2</RegistryNumber>
<NameOfSubstance UI="D008031">Lignin</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D019295" MajorTopicYN="N">Computational Biology</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="Y">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008658" MajorTopicYN="Y">Inactivation, Metabolic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008031" MajorTopicYN="N">Lignin</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050216" MajorTopicYN="N">Metabolic Detoxication, Phase I</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050217" MajorTopicYN="N">Metabolic Detoxication, Phase II</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020075" MajorTopicYN="N">Phanerochaete</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064210" MajorTopicYN="Y">Secondary Metabolism</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="N">Stress, Physiological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059467" MajorTopicYN="N">Transcriptome</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Detoxification responses</Keyword>
<Keyword MajorTopicYN="N">GEO2R</Keyword>
<Keyword MajorTopicYN="N">Gene expression omnibus (GEO)</Keyword>
<Keyword MajorTopicYN="N">Lignocellulose</Keyword>
<Keyword MajorTopicYN="N">Phanerochaete chrysosporium</Keyword>
<Keyword MajorTopicYN="N">Phase I and phase II metabolic enzymes</Keyword>
<Keyword MajorTopicYN="N">Transcriptome</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>01</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>02</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2017</Year>
<Month>02</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>3</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>7</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>3</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28275822</ArticleId>
<ArticleId IdType="doi">10.1007/s00294-017-0686-7</ArticleId>
<ArticleId IdType="pii">10.1007/s00294-017-0686-7</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nat Prod Rep. 2011 Nov;28(12):1883-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21918777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosci Biotechnol Biochem. 2009 Aug;73(8):1722-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19661694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycobiology. 2011 Dec;39(4):257-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22783113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2017 Jan 3;10 :4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28053664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Rev Biochem Mol Biol. 2006 Jul-Aug;41(4):241-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16849108</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2014 Aug 29;15:293</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25176396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Biol Sci. 2017 Jan 1;13(1):85-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28123349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2010 Jan 1;26(1):139-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19910308</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2009 Sep;75(17 ):5570-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19542331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2004 Jun;22(6):695-700</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15122302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2004 Jun 12;20(9):1453-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14871861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Enzyme Microb Technol. 2008 Aug 5;43(2):205-213</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19730708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2015 May;99(10):4201-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25904131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Can J Microbiol. 1983 Oct;29(10):1253-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6661696</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2014 Jun;42(11):e91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24753412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2007 Jul 11;55(14):5461-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17552541</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2003 Sep 11;4:41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12969510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1996 Feb;62(2):593-600</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8593059</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2010 Aug;87(5):1907-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20508934</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2000 Feb;146 ( Pt 2):405-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10708379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2014 Jan;42(Database issue):D699-704</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24297253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2004 Nov 22;20(17):3246-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15180930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 2015 Aug;61(3):347-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25407462</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2010 Jun;154(2):103-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20668491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1994 Feb;60(2):709-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16349197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Xenobiotica. 1973 May;3(5):305-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4584115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2013 May 21;4:118</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23734153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2006 May;43(5):343-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16524749</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2011 Oct 03;9(11):803-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21963803</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 2015 May;61(2):127-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25407463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2008 Dec;81(3):399-417</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18810426</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Adv. 2012 Nov-Dec;30(6):1575-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22580218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1960 Nov 12;188:560-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13719300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2007 Jun;75(3):609-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17308906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2006 Aug 21;580(19):4597-601</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16876163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2014 Jan;42(Database issue):D490-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24270786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2015 Apr 20;43(7):e47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25605792</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2009 Jun;75(12):4058-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19376920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Microbiol. 2009 Jun;47(3):308-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19557348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2010 Jun;76(11):3599-610</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20400566</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 May;40(10):4288-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22287627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biostatistics. 2008 Apr;9(2):321-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17728317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2000 Nov;55(6):481-504</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11130659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 2010 Oct;56(5):401-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20532887</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2011 Jul;77(13):4499-507</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21551287</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Pharmacol Toxicol. 2005;45:311-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15822179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1992 Jan;58(1):221-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1539977</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2000 Jun;11(3):236-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10851146</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 1987;41:465-505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3318677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2009 Jan;37(Database issue):D233-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18838391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2015 Jan;43(Database issue):D1049-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25428369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 2003 Mar;270(6):1036-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12631263</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2014 Sep;80(18):5828-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25015893</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2014 Oct;80(20):6316-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25107961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 1992 Mar;21(3):255-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1314140</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 May 26;7:735</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27303427</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2001 May;58(5-6):737-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11437235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2000 May;25(1):25-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10802651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1991 Jan;173(1):345-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1987125</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2016 Jun 30;82(14 ):4387-400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27208101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2014 Dec;80(24):7574-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25261518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1978 Sep;135(3):790-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">690075</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2005 Dec;274(5):454-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16231151</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2015 Nov;81(22):7802-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26341198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1986 Dec 25;261(36):16948-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3023375</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
</list>
<tree>
<country name="Canada">
<noRegion>
<name sortKey="Kameshwar, Ayyappa Kumar Sista" sort="Kameshwar, Ayyappa Kumar Sista" uniqKey="Kameshwar A" first="Ayyappa Kumar Sista" last="Kameshwar">Ayyappa Kumar Sista Kameshwar</name>
</noRegion>
<name sortKey="Qin, Wensheng" sort="Qin, Wensheng" uniqKey="Qin W" first="Wensheng" last="Qin">Wensheng Qin</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhanerochaeteV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000170 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000170 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhanerochaeteV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:28275822
   |texte=   Gene expression metadata analysis reveals molecular mechanisms employed by Phanerochaete chrysosporium during lignin degradation and detoxification of plant extractives.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:28275822" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhanerochaeteV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Fri Nov 13 18:33:39 2020. Site generation: Fri Nov 13 18:35:20 2020